Impactful Scientific Software Engineering

data science
informatics
research
Author

Candace Savonen

Published

November 13, 2023

UNDER DEVELOPMENT

Creating software for specific biological fields in the academic research setting requires a unique set of skills. In this blog I’ve summarized these skill sets into three areas.


sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS 15.0.1

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: America/New_York
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

loaded via a namespace (and not attached):
 [1] vctrs_0.6.5       httr_1.4.7        cli_3.6.3         knitr_1.49       
 [5] rlang_1.1.4       xfun_0.49         jsonlite_1.8.9    glue_1.8.0       
 [9] openssl_2.2.2     askpass_1.2.1     htmltools_0.5.8.1 hms_1.1.3        
[13] fansi_1.0.6       rmarkdown_2.29    evaluate_1.0.1    tibble_3.2.1     
[17] tzdb_0.4.0        fastmap_1.2.0     yaml_2.3.10       lifecycle_1.0.4  
[21] compiler_4.4.0    ottrpal_1.2.1     fs_1.6.5          htmlwidgets_1.6.4
[25] pkgconfig_2.0.3   rstudioapi_0.17.1 digest_0.6.37     R6_2.5.1         
[29] utf8_1.2.4        readr_2.1.5       pillar_1.9.0      magrittr_2.0.3   
[33] tools_4.4.0       xml2_1.3.6